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Abstract  —  The Segway Personal Transportation vehicle, 

a self balancing, single user, transportation vehicle, was 

originally conceptually conceived by Dean Kamen.  Here, 

Dean Kamen addressed the classic control problem, known 

as the inverted pendulum problem; he approached this 

problem with redundant array of tilt and gyroscopic sensors 

that measured angles of incline and acceleration/speed.  In 

addition to proprietary software developed, a self balancing 

personal transportation vehicle. 

Index Terms  —  Self Balancing Platform, Personal 

Transportation Vehicle, Embedded Software Design, 

Bluetooth Communications, Wireless Steering, Sabertooth, 

Atmel.  

 

I. INTRODUCTION 

The Segway PT, in itself a marvel of modern 

engineering that has seen many applications in the civilian 

and military fields.  Segways allow users to agile use and 

navigate routes not normally taken.  Segways are very 

popular personal transportation vehicle used in many 

different tours, in many different countries around the 

world.  In addition, the Segway is used by private security 

to patrol large areas quickly while maintain a low profile, 

which in turn keeps the security personnel safe from 

potential threats.  Furthermore, Segway has coupled with 

the military and various universities around the country to 

be developed into a military platform to be used in the 

field.in length to the Summary, many contributors opt to 

prepare their Summary in the format required for the 

Digest. This template contains the instructions for the 

proper preparation of such a document. 

Approaching the inverted pendulum problem using an 

Atmel ATMega328p as our main microcontroller allows 

for an extremely customizable, user – friendly interface 

that allows easy access to various data streams for each 

aspect of the platform’s balancer.  A skilled engineer will 

be able view how the platform reacts to its surrounding 

environment; therefore, understanding how to adjust the 

software of the balancer to become more compatible with 

the platforms current environment.  Moreover, the 

Saberthooth 2x12 motor controller allows an engineer to 

adjust the control input for the platform.  Currently the 

platform utilizes the Atmel ATMega328p to process data 

from a Bluetooth module and an Inertial Measurement 

Unit (IMU) and outputs processed commands to the motor 

controller. 

The primary motivation for this senior design project 

comes from the intended nature of engineering and 

implementing a unique, challenging, yet feasible and 

rewarding senior design project.  Moreover, this project is 

the first of its kind here at UCF, and hopefully paves the 

way for future projects addressing the inverted pendulum 

problem. 

 

II. THE MAGIC PLANK 

The Magic Plank will share the same principles with 

that of the Segway in the sense that the Magic Plank will 

be addressing the inverted pendulum problem, be a 

platform that will be balanced of two wheels, and will 

have a custom tailored algorithm that will serve as the 

balancer and therefore maintain the equilibrium of the 

platform. 

The Magic Plank addresses balancing in a different 

manner than the current implementation of that of the 

Segway.  The Magic Plank’s base platform will be more 

elongated length wise to resemble more of a skateboard.  

This forces the wheels to be placed in the center of the 

platform.  Furthermore, the Magic Plank will be driven by 

chain motors, which are less responsive than the servo 

motors used on a traditional Segway PT. This slight 

downfall will hinder the effectiveness of the Magic 

Plank’s ability to maintain equilibrium, therefore 

providing a greater challenge in the development of the 

balancing algorithm.   

In addition to a different physical layout, the Magic 

Plank takes an unconventional approach to steering with 

the use of Bluetooth wireless communication. By taking 

advantage of the Nintendo Wii Wireless remote’s easy and 

intuitive interface, the Magic plank can be steered 

remotely. In addition to steering, the wireless interface 

provides for an easy to use “dead man” switch that will 

terminate operation of the Magic Plank on demand. Since 

this is a software operation, the platform can resume 

functioning at any time with the use of a “revive” 

command, which is a unique and useful application that is 

otherwise not easily achievable through conventional 

hardware means. 

The challenge of designing the Magic Plank comes from 

limited budget, less responsive motors, less data 

acquisition redundancy, and an added element of wireless 

steering that is not present in conventional platforms such 

as the Segway PT. 

 



III. ATMEL ATMEGA328P MICROCONTROLLER 

The Atmel Atmega328p microcontroller is the brain 

behind the operation.  The Atmega328p is a highly 

customizable, user friendly and low power consumption 

device.  The main advantage of the Atmega328p is the 

Arduino software platform, which allows easy 

development to tailor the microcontroller to the specific 

needs of the user.  This microcontroller was chosen as a 

result of identifying the needs of the platform and finding 

the cheapest controller to suit the needs of the platform. 

The first piece of hardware, the Bluetooth RN-42 SMD, 

operates via UART interface, so hardware supported 

UART is preferred. The second piece of hardware, the 

Sabertooth motor controller, requires only a single serial 

transmission, which any microcontroller would be able to 

do. The third piece of hardware, the IMU3000 digital 

gyroscope, operates using I
2
C Interface, so a 

microcontroller that has hardware support for this 

interface is required. The Atmega328p features hardware 

support for I
2
C interface and UART interfaces along with 

a handful of other general purpose digital pins, which 

perfectly fits the needs of the Magic Plank. Utilizing these 

hardware supported interfaces provides a minimal waste 

of processing power and power consumption.  In addition 

to its hardware needs, the Magic Plank must be able to 

execute code fast enough to respond rapidly to incoming 

data. The Atmega328p is capable of running at variable 

frequency at 1MIPS per MHz. The Magic Plank clocks the 

328p at 16MHz and is capable of running the main code 

loop in around 12ms, which is more than enough for the 

Magic Plank’s 50ms loop time. This leaves roughly 40ms 

as a timeout interval for receiving information from the 

Bluetooth module. The Atmega 328p is fast enough to suit 

the needs of the system, making wireless communication 

the bottleneck of the system. 

  

IV. BLUETOOTH MODULE 

The Magic Plank utilizes the Human Interface Device 

protocol through the SMD Module RN-42.  This module 

has a small profile as well as a small energy foot print.  In 

addition the SMD Module RN-42 can deliver a three 

megabit data stream up to twenty meters or sixty feet 

away.  This allows a user to use a wireless steering device 

off the platform and operate the platform a respectable 

range.  Therefore, a user can assess and analyze the 

operation of the platform.  

The SMD Module RN-42 Human Interface Device does 

not require any software configuration to pair up with any 

other Human interface Device protocol device.  Any 

device with the Human Interface Device protocol with 

automatically detects the SMD Module RN-42 when the 

module is receiving power. 

The Atmega328p read the data stream from the SMD 

Module RN-42 in the form of hardware UART.  Hardware 

UART allows high resolution baud rate generation; 

coupled with the data overrun detection, framing error 

detection, and the noise filtering from the Atmega328p 

microcontroller can establish a near errorless 

communication.  With Human Interface Device protocol 

coupled with the advantages of using hardware UART, 

using the SMD Module RN-42 creates a safe form of 

communication that has little influence from outside the 

system. 

 

 
 
Figure 1:  Block diagram illustrating the pin connections 

between the Atmel Atmega328p and the SMD Module RN-42. 

 

Bluetooth RN - 42 Pin Connection Summary 

Pin Connection 

13 To IO0 Connected to ATMEGA 328P Pin 1 

14 To IO1 Connected to ATMEGA 328P Pin 2 

 
Table 1:  Table addressing the pin outs from the SMD Module 

RN-42 to the Atmel Atmega328p.  

A. Wiimote Wireless Steering 

Wireless steering is achieved through Human Interface 

Device protocol for Bluetooth communications.  This 

allows a user to pair up a Wiimote wireless controller, to 

be used as the steering device to control the platform.  The 

Wiimote wireless controller connects to the SMD Module 

RN-42 using the Broadcom 2042 controller chip.  This 

controller chip utilizes the Human Interface Device 

protocol.  Furthermore, the Wiimote wireless controller 

utilizes a three-axis linear accelerometer located on the top 

circuit of the Wiimote.  The three-axis linear 

accelerometer measures accelerations over a range of at 

least +/- three Gs with ten percent sensitivity. 

 



 
 

Figure 2:  Diagram illustration how the Nintendo Wiimote 

wireless controller’s accelerometer measures data . 

 

The Wiimote wireless controller has many different 

numbers of data reporting modes.  Each of these modes 

combine certain core data features with data from external 

peripherals and sends the data to the host device through 

one of the report IDs determined by the current mode in 

use.  A hexadecimal data packet is sent out every time a 

value of one of the reported features has changed.   

The reporting mode used for the Magic Plank 

implementation sends a hexadecimal Human Interface 

Device packet consisting of both button data and 

accelerometer data.  The data sent in the Human Interface 

Device packet will be in the following formant: 

(a1) 31 BB BB XX YY ZZ 

(a1) indicates that the example packet is input from the 

Wiimote wireless controller.  0x31 shows that the data 

report mode is reporting both button and acceleration data.  

BB BB are a combination of hexadecimal values that 

describe which button is currently being pressed on the 

Wiimote wireless controller.  Hexadecimal values XX, 

YY, and ZZ are unsigned bytes that represent the 

acceleration in each of the three axis. 

 
Button Number 

(dec) 
Value (hex) 

Two 1 0x0001 

One 2 0x0002 

B 3 0x0004 

A 4 0x0008 

Minus 5 0x0010 

? motion ? 6 0x0020 

? motion ? 7 0x0040 

Home 8 0x0080 

Left 9 0x0100 

Right 10 0x0200 

Down 11 0x0400 

Up 12 0x0800 

Plus 13 0x1000 

? motion ? 14 0x2000 

? motion ? 15 0x4000 

? Reading Mii ? 16 0x8000 

 
Table 2:  A table listing all possible hexadecimal vales that could 

be in a Human Interface Device packet. 

 

 

V. IMU 3000 FUSION BOARD 

The IMU 3000 Fusion Board is a combination of the 

IMU 3000 and the ADXL345.  This fusion board is a six 

axis inertial measurement/moment unit that uses the single 

I
2
C bus on the Atmel Atmega328p microcontroller.  IMU 

3000 is a three axis gyroscope with programmable ranges 

of +/- 250 to +/- 2000 deg/sec.  Having a very wide range 

of programmable sensitivity allows a user to adjust the 

IMU 3000 to adjust the platform to be used for any 

purpose; furthermore, the customizable range maybe 

altered to be used on a variety of different drivable 

surfaces.  

The ADXL345 is a three axis accelerometer with 

programmable ranges of +/- 2 to +/- 16 gees.  The primary 

purpose of the IMU 300 Fusion board is to be a redundant 

sensor to the IMU 3000.  Just like the IMU 3000 the 

programmable sensitivity of the gee range allow the 

ADXL345 to complement the IMU 3000’s programmed 

sensitivity. 

A secondary I2C is located on the IMU 3000 Fusion 

Board.  The secondary I2C acts as a line of 

communication between the IMU 3000 and the 

ADXL345.  The IMU 3000 acts as the master to 

ADXL345; as a result two distinct advantages of the setup 

of master and slave allows less processing power of Atmel 

Atmega328p.  This allows more important data to be 

processed without having other subroutines fight for data 

computations using microcontroller resources.   

The IMU 3000 is connected to the Atmel Atmega328p 

microcontroller through pins twenty-seven which connects 

to SDA(data line) on the IMU 3000 Fusion Board, and to 

pin twenty-eight to SCL(clock line). 

 



 
 

Figure 3:   Block diagram illustrating the pin connections 

between the Atmel Atmega328p and the IMU Fusion Board. 

 

Inertial Measurement/Moment Fusion Board Pin Connection 
Summary 

Pin Connection 

SDA Pin twenty-seven on the Atmel Atmega328p 

SCL Pin twenty-eight on the Atmel Atmega328p 

  
Table 3:  A table listing the pin out connections between the 

IMU 3000 Fusion Board and Atmel Atmega328p. 

 

VI. MOTORS AND MOTOR CONTROL 

A. SABERTOOTH 2X12 MOTORCONTROLLER 

The Sabertooth 2x12 Motor Controller, designed and 

manufactured by Dimension Engineering, is a very robust 

motor controller cable of handling heavy payloads.  

Sabertooth 2x12 is capable of supplying power to two 

identical DC motors to be driven at the same time at 

twelve Amps nominal and eighteen Amps peak.  This 

motor controller allows hearty protection for the platforms 

more sensitive electronic components. Protection offered 

by the Sabertooth 2x12 was not planned as forethought for 

the platform, but an actual built in design in the Sabertooth 

2x12 Motor Controller.    

Leads from the power supply plug directly into the 

Sabertooth 2x12 Motor Controller.  With the motors and 

the power supply directly connected to the motor 

controller, this allows the signals from the Atmel 

Atmega328p microcontroller to be read by the motor 

contoller, the motor controller will then draw the 

necessary power from power supply and the route them to 

motors. Moreover, the Sabertooth 2x12 Regenerative 

Motor Controller recycles all excess power, now in 

stepped down voltage, into the circuit and therefore limits 

the amount of power drawn from the power supply 

extending the run time of the power supply. 

The Sabertooth 2x12 Motor Controller takes input 

signals in the form of Packetized Serial Protocol from the 

Atmel Atmega328p.  Packetized Serial Protocol is a point 

to point protocol, and provides a very reliable form of 

communication between the Atmel Atmega 328p 

microcontroller and the Sabertooth 2x12 Motor Controller.  

This is due to the ability to flash a boot loader onto the 

Atmega328p.  With the boot loader flashed onto the 

microcontroller a predefined library for the Packetized 

Serial protocol can be loaded on to the Atmel 

Atmega328p.  Then the dip switches on the Sabertooth 

2x12 Motor controller a configured with switches “one” 

and “two” in the down position.  Switches “four” through 

“six” determine the address of the motor controller; the 

address can range from one hundred twenty-eight to one 

hundred thirty-five.  The address can be configured so that 

multiple motor controllers can share the same serial 

transmitter.  However, in the case of the Magic Plank we 

will only be using one. 

 

 
 
Figure 4:  Picture of the Sabertooth 2x12 Motor Controller with 

the dip switches configured for Packetized Serial Protocol. 

 

The Sabertooth 2x12 Motor Controller will be 

connected via pins “S1” and S2” to the Atmel 

Atmega328p pins nineteen and eighteen.  The pins are the 

RX and TX and establish the line of communication 

between the two.  Recycled power in the form or five volts 

is transferred from pin “5V” to the pin labeled ‘VCC” on 

the Atmega328p.  Battery leads are connected positive 

into “B+” and negative into “B-“.  The motors are 



connected “M1A”, “M1B”, “M2A”, and “M2B” 

respectively. 

 

B. 250W Brushed DC Motors 

     The Magic Plank utilizes 2 250 watt brushed DC 

motors to balance. These powerful motors are rated to 

draw a current of 13A. Although the Sabertooth motor 

controller is rated for 12A nominally, it can support up to 

18A peak current. With the batteries supplying 24V, 250 

watt motors should be drawing around 10.4A nominally, 

which is well within the supported range of the motor 

controller. Even with motors rated for such high current 

draw, the motors are never used to their full capacity, 

which means that, under most circumstances, the motors 

will not be requiring a high current draw. Even in the 

event of a motor stall where the motors reverse direction 

and draw a large spike in the current, the motor controller 

offers overdraw protection, preventing the controller from 

burning out or becoming damaged. 

     

 
Figure 5:  Figure illustration the pin  connections between the 

Saberthooth 2x12 Motor Controller, Atmel Atmega328p 

Microcontroller,  power supply, and motors. 

 

Sabertooth 2x12 Motor Controller Pin Connections  

Pin on the Sabertooth 
2x12 

Connection 

S2 Pin 19 on Atmega328p 

S1 Pin 18 on Atmega328p 

5V VCC on Atmega328p 

0V Ground on Atmega328p 

B+ Positive lead on Power supply 

B- Negative lead on Power Supply 

M1A Lead from Motor 1 

M1B Lead from Motor 1 

M2A Lead from Motor 2 

M2B Lead from Motor 2 

 
Table 4:  A table listing the pin connections between the 

Saberthooth 2x12 Motor Controller, Atmel Atmega328p 

Microcontroller, power supply, and motors. 

VI. SOFTWARE OVERVIEW 

The Magic Plank is has an intricate network of thought 

out classes.  Each class provides a compartmentalized 

function that by itself useless, but combined with the other 

classes, provides all the necessary data that is needed to 

ensure that the balancer algorithm runs as smoothly as 

possible.  The software design behind the magic plank 

consists of five distinct classes, each serving a 

compartmentalized function, but is important to overall 

effectiveness of the balancer algorithm. 

The Sabertooth class handles the interaction of the 

motors and how the Packetize Serial Protocol sends and 

receives data from the Atmel Atmega328p 

Microcontroller.  Furthermore, the Sabertooth class is 

responsible for handling the voltage required by the 

motors, as well as recycling unused power.  Moreover, the 

sabertooth class handles the software  revive and kill 

switches that either provide power to the motors or cut all 

power to them. 

The Bluetooth class handles how the SMD Module RN-

42 receives and sends data from Wiimote wireless 

controller and the Atmel Atmega328p.  In addition, 

Bluetooth class, assists in processing the raw values that is 

transmitted from the Wiimote wireless controller and for 

the initial “pairing” of the Wiimote Wireless controller 

and the SMD Module RN-42. 

The IMU class provides an important and complex job 

that is extremely essential to the efficiency of the balancer 

protocol.  The IMU class takes full advantage of the 

“master-slave” relationship of the IMU 3000 Fusion 

board.  Using the secondary I
2
C, IMU 3000 is able to read 

the data from the ADXL345 registers; this data is passed 

through IMU 3000 as positional data measured in float 

point.  The IMU class also calibrates the IMU 3000 Fusion 

Board for each use.  The calibration is achieved by 

“zeroing out” the IMU 3000 Fusion Board.  

 This means that each time Magic Plank is powered on, 

the platform must be held in a level position to get a base 

reference read of being level.  If Magic Plank is held in a 

position that is not horizontally level, then IMU 3000 

Fusion board will that position as reference and strive to 

balance the Magic Plank to the reference position.  The 

raw data that is measured by the IMU 3000 and the 

ADXL345 is converted into angular rate or degrees per 



second for the IMU 3000 and gees for the ADXL345.  The 

data from the IMU class is then passed on to the Filter 

class, here the vibrational noise from the accelerometer 

and the drift from the gyroscope’s drift.  This ensures pure 

unadulterated data, which allows easier processing in the 

balancer algorithm.  The data that is outputted by the IMU 

class in the form of current angle or projected angle.  This 

is combined data of the IMU 3000 and the ADXL345.  

The filter class manages the IMU class. 

The fifth and final class is the balancer itself.  The 

balancer manages the Sabertooth, Bluetooth, and Filter 

classes.  The Primary balancing algorithm is a 

Proportional Integral Derivative control loop.  The data 

from the filter is passed into the balancer.  The balancer 

using the Proportional Integral Derivative control loops 

creates data that is sent to the motor controller.  The data 

is then interpreted by the motor controller to provide the 

proper power to the motors to keep the platform balanced.  

Moreover, in the same data packet, the balancer is also 

transmitting steering comrades to the motor controller.  

Again, the motor controller will interpret the data to 

determine which motor must spin faster than the other to 

either turn left or right.  

 

VII. SOFTWARE DESIGN 

The software design for the Magic Plank is really the 

main part of the project. It is implemented using the 

Arduino programming language, which is syntax 

compatible with C++. Taking advantage of this object 

oriented code base, the code is designed as a collection of 

modules which each perform their functions 

independently. The hierarchy takes a “bottom up” 

approach by first addressing bare hardware interfacing and 

handling the hardware functions to make it easier to 

handle from the higher level modules. The Sabertooth, 

IMU, and Bluetooth modules handle hardware interfacing 

while the Filter class manages the IMU and handles angle 

processing for the Balancer class, which manages all the 

classes in the hierarchy and incorporates them into a main 

control loop. 

A. Balancer 

The balancer class is the main “master” class of the 

system. Balancer, as seen in the code hierarchy, 

instantiates and manages the Bluetooth, Sabertooth, and 

Filter classes. The balancer contains the Proportional 

Integral Derivative (PID) control algorithm that calculates 

a speed for the motors. The main control loop operates by 

first updating the Bluetooth class, which will either result 

in a new steering value from the Bluetooth module or 

result in a failure. In the event of a failure, the loop will 

send a signal to terminate movement of the motors, which 

creates the effect of a software “dead man” switch. More 

on this functionality is described in detail in the section 

regarding the Bluetooth class. In the event of a success, 

the loop then continues to a loop timing control, which 

regulates the loop time of the algorithm. Currently, the 

algorithm executes a loop time of 50 ms, or 200 loops per 

second. After the loop regulation time, the PID control 

function is executed. 

The PID control function operates by first updating the 

Filter class, which implicitly updates the IMU class, 

therefore sampling new data from the current data from 

the IMU3000. Once this update is complete, a new angle 

is returned for use in the PID calculation.  

 

 

 
 

 

Figure 6:  Block diagram that displays the relationship 

between each class. 

 



The first thing to calculate is P, or the proportional gain 

of the system. P is the simplest part of the algorithm, 

simply corresponding to a motor offset directly 

proportional to the current angle of the system. P is 

calculated thusly: 

 

  
 

 
  

 

 
  

Where θ is the current angle of the system and δ is the 

current rate of change of the angle as read from the 

gyroscope. 

Next is I, or the Integral calculation. I can be considered 

a lag time that catches up to the Proportional response 

over time. The primary purpose of I is to provide a 

smoothing effect that prevents the platform from 

overcompensating and reduces the effects of oscillation on 

the system. I is calculated as follows: 

 

  
                 

         

       

 

Where Iresponse is a constant that affects the speed at which 

I will respond over time and PPrev is the Proportional 

response of the previous loop. 

 The final piece of the puzzle is D, which is the 

Derivative. D can be considered a response to spikes in the 

system, where D increases with a rapid change over time 

and approaches zero when there is little change over time. 

This results in the ability of the system to more readily 

compensate for a rapid change so that it can compensate 

accordingly. D is calculated as follows: 

 

  
   (       )            

 
 

 

Where PPrev is the Proportional response of the previous 

loop, P is the Proportional response of the current loop, 

and Dresponse is a constant that determines how rapidly D 

will change over time. 

Finally, these are all summed together to produce the 

raw speed σ. 

 

                       

 

Where ω is the gain, a multiplier used to increase the raw 

magnitude sent to the motor controller, and constants Kp, 

Ki, and Kd are constants used to determine the influence of 

P, I, and D. 

Next, the raw speed is factored in with the steering 

command, which is a number that is added to the first 

motor and subtracted from the speed of the second motor 

in order to provide equal and opposite offsets to the motor, 

allowing for the platform to turn with a zero turn radius 

and thus preserving equilibrium. 

B. Bluetooth 

The Bluetooth class is the driver that handles all input 

from the Bluetooth RN-42 Bluetooth module. The first 

function is the update function, which reads in and parses 

a new two byte signed integer value from the Bluetooth 

module. This value is then cross-referenced against a pre-

defined “kill” command. If the “kill” command is 

received, a killSwitch flag is marked. If the connection 

times out and does not receive any data, the update 

function returns false. If the killSwitch flag is marked or 

the update returns false, the Balancer takes appropriate 

action and terminates movement of the motors. Upon 

termination of the motors, the Balance r then calls the next 

function, which is the DeadLoop. In the loop, the 

Bluetooth module continues to be sampled until it receives 

a pre-defined “revive” command. Upon receiving this 

command, the loop exits and the Balancer is free to 

resume the balancing loop. In addition to handling the 

“kill switch”, the secondary function of the Bluetooth 

class is to interpret incoming steering commands, which, 

if valid, are passed up to the Balancer class for integration 

into the control loop.  

 

C. Filter 

The Filter class handles processing the raw data passed 

up from the IMU class and passes the data through what is 

known as a Complementary Filter. The Accelerometer’s 

angle can be calculated by taking the current gravitational 

force in Gs upon all three axes. First, the force vector R is 

calculated using the following formula: 

   √  
    

     
   

 

The relevant axis of tilt for the Magic Plank is the X axis. 

The angle upon the X axis can be calculated as follows: 

 

             (
  

 
)   

 

 
 

 

The Gyroscope’s angle calculation can be calculated by 

taking the current rate of change in degrees per second and 

factoring it in with the time elapsed since the previous 

sample as follows: 

 

              
     

    
 

 

Next, since the gyroscope suffers from gyroscopic drift 

over time and the accelerometer suffers from vibrational 

noise, the angles are passed through the filter. The 

complementary filter can be expressed as follows: 

 

   
 

     

 



 

    (           )  (   )         

 

Where τ is adjusted to increase or decrease the ratio of the 

accelerometer to the gyroscope. With this filter, the 

accelerometer’s vibrational noise can be suppressed while 

the gyroscope’s drift can be corrected, returning a more 

accurate angle for the Balancer class.  

 

D. IMU 

The IMU class is the hardware driver for the IMU3000. 

The IMU works by utilizing the hardware supported I
2
C 

interface and the Arduino I
2
C software library. Initializing 

the IMU causes it to enter into the calibration function, 

which calibrates the IMU, assuming that the current 

orientation is level. This initialization is actually critical to 

the startup of the Magic Plank and determines the level at 

which the platform will attempt to balance. Updating the 

IMU causes the class to sample from the IMU3000’s 

registers, sampling the most recent raw data from the 

gyroscope and its auxiliary accelerometer. It then subtracts 

the calibration offsets determined upon initialization and 

also converts the raw data into usable data: degrees per 

second for the gyroscope and force of gravity in Gs. These 

values are then passed up for the Filter class to use. 

 

E. Sabertooth 

     The IMU class is the hardware driver for the IMU3000. 

The IMU works by utilizing the hardware supported I
2
C 

interface and the Arduino I
2
C software library. Initializing 

the IMU causes it to enter into the calibration function, 

which calibrates the IMU, assuming that the current 

orientation is level. This initialization is actually critical to 

the startup of the Magic Plank and determines the level at 

which the platform will attempt to balance. Updating the 

IMU causes the class to sample from the IMU3000’s 

registers, sampling the most recent raw data from the 

gyroscope and its auxiliary accelerometer. It then subtracts 

the calibration offsets determined upon initialization and 

also converts the raw data into usable data: degrees per 

second for the gyroscope and force of gravity in Gs. These 

values are then passed up for the Filter class to use. 

 

VII. CONCLUSION 

The Magic Plank allows exploring a problem that has 

not been attempted yet at UCF.  Exploring the inverted 

pendulum problem sheds light in an area that has not 

actively researched at UCF.  The Magic Plank has and 

continues to provide much knowledge in embedded 

software programming and understand how Proportional 

Integral Derivative control loop handles the delicate 

balance of the inverted pendulum problem with the added 

challenge of wireless steering control. 
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