
Magic Plank

Brian Jacobs, Kenneth Santiago Jr, Stephen C

Fraser II

SCHOOL OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE, UNIVERSITY OF CENTRAL

FLORIDA, ORLANDO, FLORIDA, 32816-2450

Abstract — The Segway Personal Transportation vehicle,

a self balancing, single user, transportation vehicle, was

originally conceptually conceived by Dean Kamen. Here,

Dean Kamen addressed the classic control problem, known

as the inverted pendulum problem; he approached this

problem with redundant array of tilt and gyroscopic sensors

that measured angles of incline and acceleration/speed. In

addition to proprietary software developed, a self balancing

personal transportation vehicle.

Index Terms — Self Balancing Platform, Personal

Transportation Vehicle, Embedded Software Design,

Bluetooth Communications, Wireless Steering, Sabertooth,

Atmel.

I. INTRODUCTION

The Segway PT, in itself a marvel of modern

engineering that has seen many applications in the civilian

and military fields. Segways allow users to agile use and

navigate routes not normally taken. Segways are very

popular personal transportation vehicle used in many

different tours, in many different countries around the

world. In addition, the Segway is used by private security

to patrol large areas quickly while maintain a low profile,

which in turn keeps the security personnel safe from

potential threats. Furthermore, Segway has coupled with

the military and various universities around the country to

be developed into a military platform to be used in the

field.in length to the Summary, many contributors opt to

prepare their Summary in the format required for the

Digest. This template contains the instructions for the

proper preparation of such a document.

Approaching the inverted pendulum problem using an

Atmel ATMega328p as our main microcontroller allows

for an extremely customizable, user – friendly interface

that allows easy access to various data streams for each

aspect of the platform’s balancer. A skilled engineer will

be able view how the platform reacts to its surrounding

environment; therefore, understanding how to adjust the

software of the balancer to become more compatible with

the platforms current environment. Moreover, the

Saberthooth 2x12 motor controller allows an engineer to

adjust the control input for the platform. Currently the

platform utilizes the Atmel ATMega328p to process data

from a Bluetooth module and an Inertial Measurement

Unit (IMU) and outputs processed commands to the motor

controller.

The primary motivation for this senior design project

comes from the intended nature of engineering and

implementing a unique, challenging, yet feasible and

rewarding senior design project. Moreover, this project is

the first of its kind here at UCF, and hopefully paves the

way for future projects addressing the inverted pendulum

problem.

II. THE MAGIC PLANK

The Magic Plank will share the same principles with

that of the Segway in the sense that the Magic Plank will

be addressing the inverted pendulum problem, be a

platform that will be balanced of two wheels, and will

have a custom tailored algorithm that will serve as the

balancer and therefore maintain the equilibrium of the

platform.

The Magic Plank addresses balancing in a different

manner than the current implementation of that of the

Segway. The Magic Plank’s base platform will be more

elongated length wise to resemble more of a skateboard.

This forces the wheels to be placed in the center of the

platform. Furthermore, the Magic Plank will be driven by

chain motors, which are less responsive than the servo

motors used on a traditional Segway PT. This slight

downfall will hinder the effectiveness of the Magic

Plank’s ability to maintain equilibrium, therefore

providing a greater challenge in the development of the

balancing algorithm.

In addition to a different physical layout, the Magic

Plank takes an unconventional approach to steering with

the use of Bluetooth wireless communication. By taking

advantage of the Nintendo Wii Wireless remote’s easy and

intuitive interface, the Magic plank can be steered

remotely. In addition to steering, the wireless interface

provides for an easy to use “dead man” switch that will

terminate operation of the Magic Plank on demand. Since

this is a software operation, the platform can resume

functioning at any time with the use of a “revive”

command, which is a unique and useful application that is

otherwise not easily achievable through conventional

hardware means.

The challenge of designing the Magic Plank comes from

limited budget, less responsive motors, less data

acquisition redundancy, and an added element of wireless

steering that is not present in conventional platforms such

as the Segway PT.

III. ATMEL ATMEGA328P MICROCONTROLLER

The Atmel Atmega328p microcontroller is the brain

behind the operation. The Atmega328p is a highly

customizable, user friendly and low power consumption

device. The main advantage of the Atmega328p is the

Arduino software platform, which allows easy

development to tailor the microcontroller to the specific

needs of the user. This microcontroller was chosen as a

result of identifying the needs of the platform and finding

the cheapest controller to suit the needs of the platform.

The first piece of hardware, the Bluetooth RN-42 SMD,

operates via UART interface, so hardware supported

UART is preferred. The second piece of hardware, the

Sabertooth motor controller, requires only a single serial

transmission, which any microcontroller would be able to

do. The third piece of hardware, the IMU3000 digital

gyroscope, operates using I
2
C Interface, so a

microcontroller that has hardware support for this

interface is required. The Atmega328p features hardware

support for I
2
C interface and UART interfaces along with

a handful of other general purpose digital pins, which

perfectly fits the needs of the Magic Plank. Utilizing these

hardware supported interfaces provides a minimal waste

of processing power and power consumption. In addition

to its hardware needs, the Magic Plank must be able to

execute code fast enough to respond rapidly to incoming

data. The Atmega328p is capable of running at variable

frequency at 1MIPS per MHz. The Magic Plank clocks the

328p at 16MHz and is capable of running the main code

loop in around 12ms, which is more than enough for the

Magic Plank’s 50ms loop time. This leaves roughly 40ms

as a timeout interval for receiving information from the

Bluetooth module. The Atmega 328p is fast enough to suit

the needs of the system, making wireless communication

the bottleneck of the system.

IV. BLUETOOTH MODULE

The Magic Plank utilizes the Human Interface Device

protocol through the SMD Module RN-42. This module

has a small profile as well as a small energy foot print. In

addition the SMD Module RN-42 can deliver a three

megabit data stream up to twenty meters or sixty feet

away. This allows a user to use a wireless steering device

off the platform and operate the platform a respectable

range. Therefore, a user can assess and analyze the

operation of the platform.

The SMD Module RN-42 Human Interface Device does

not require any software configuration to pair up with any

other Human interface Device protocol device. Any

device with the Human Interface Device protocol with

automatically detects the SMD Module RN-42 when the

module is receiving power.

The Atmega328p read the data stream from the SMD

Module RN-42 in the form of hardware UART. Hardware

UART allows high resolution baud rate generation;

coupled with the data overrun detection, framing error

detection, and the noise filtering from the Atmega328p

microcontroller can establish a near errorless

communication. With Human Interface Device protocol

coupled with the advantages of using hardware UART,

using the SMD Module RN-42 creates a safe form of

communication that has little influence from outside the

system.

Figure 1: Block diagram illustrating the pin connections

between the Atmel Atmega328p and the SMD Module RN-42.

Bluetooth RN - 42 Pin Connection Summary

Pin Connection

13 To IO0 Connected to ATMEGA 328P Pin 1

14 To IO1 Connected to ATMEGA 328P Pin 2

Table 1: Table addressing the pin outs from the SMD Module

RN-42 to the Atmel Atmega328p.

A. Wiimote Wireless Steering

Wireless steering is achieved through Human Interface

Device protocol for Bluetooth communications. This

allows a user to pair up a Wiimote wireless controller, to

be used as the steering device to control the platform. The

Wiimote wireless controller connects to the SMD Module

RN-42 using the Broadcom 2042 controller chip. This

controller chip utilizes the Human Interface Device

protocol. Furthermore, the Wiimote wireless controller

utilizes a three-axis linear accelerometer located on the top

circuit of the Wiimote. The three-axis linear

accelerometer measures accelerations over a range of at

least +/- three Gs with ten percent sensitivity.

Figure 2: Diagram illustration how the Nintendo Wiimote

wireless controller’s accelerometer measures data .

The Wiimote wireless controller has many different

numbers of data reporting modes. Each of these modes

combine certain core data features with data from external

peripherals and sends the data to the host device through

one of the report IDs determined by the current mode in

use. A hexadecimal data packet is sent out every time a

value of one of the reported features has changed.

The reporting mode used for the Magic Plank

implementation sends a hexadecimal Human Interface

Device packet consisting of both button data and

accelerometer data. The data sent in the Human Interface

Device packet will be in the following formant:

(a1) 31 BB BB XX YY ZZ

(a1) indicates that the example packet is input from the

Wiimote wireless controller. 0x31 shows that the data

report mode is reporting both button and acceleration data.

BB BB are a combination of hexadecimal values that

describe which button is currently being pressed on the

Wiimote wireless controller. Hexadecimal values XX,

YY, and ZZ are unsigned bytes that represent the

acceleration in each of the three axis.

Button Number

(dec)
Value (hex)

Two 1 0x0001

One 2 0x0002

B 3 0x0004

A 4 0x0008

Minus 5 0x0010

? motion ? 6 0x0020

? motion ? 7 0x0040

Home 8 0x0080

Left 9 0x0100

Right 10 0x0200

Down 11 0x0400

Up 12 0x0800

Plus 13 0x1000

? motion ? 14 0x2000

? motion ? 15 0x4000

? Reading Mii ? 16 0x8000

Table 2: A table listing all possible hexadecimal vales that could

be in a Human Interface Device packet.

V. IMU 3000 FUSION BOARD

The IMU 3000 Fusion Board is a combination of the

IMU 3000 and the ADXL345. This fusion board is a six

axis inertial measurement/moment unit that uses the single

I
2
C bus on the Atmel Atmega328p microcontroller. IMU

3000 is a three axis gyroscope with programmable ranges

of +/- 250 to +/- 2000 deg/sec. Having a very wide range

of programmable sensitivity allows a user to adjust the

IMU 3000 to adjust the platform to be used for any

purpose; furthermore, the customizable range maybe

altered to be used on a variety of different drivable

surfaces.

The ADXL345 is a three axis accelerometer with

programmable ranges of +/- 2 to +/- 16 gees. The primary

purpose of the IMU 300 Fusion board is to be a redundant

sensor to the IMU 3000. Just like the IMU 3000 the

programmable sensitivity of the gee range allow the

ADXL345 to complement the IMU 3000’s programmed

sensitivity.

A secondary I2C is located on the IMU 3000 Fusion

Board. The secondary I2C acts as a line of

communication between the IMU 3000 and the

ADXL345. The IMU 3000 acts as the master to

ADXL345; as a result two distinct advantages of the setup

of master and slave allows less processing power of Atmel

Atmega328p. This allows more important data to be

processed without having other subroutines fight for data

computations using microcontroller resources.

The IMU 3000 is connected to the Atmel Atmega328p

microcontroller through pins twenty-seven which connects

to SDA(data line) on the IMU 3000 Fusion Board, and to

pin twenty-eight to SCL(clock line).

Figure 3: Block diagram illustrating the pin connections

between the Atmel Atmega328p and the IMU Fusion Board.

Inertial Measurement/Moment Fusion Board Pin Connection
Summary

Pin Connection

SDA Pin twenty-seven on the Atmel Atmega328p

SCL Pin twenty-eight on the Atmel Atmega328p

Table 3: A table listing the pin out connections between the

IMU 3000 Fusion Board and Atmel Atmega328p.

VI. MOTORS AND MOTOR CONTROL

A. SABERTOOTH 2X12 MOTORCONTROLLER

The Sabertooth 2x12 Motor Controller, designed and

manufactured by Dimension Engineering, is a very robust

motor controller cable of handling heavy payloads.

Sabertooth 2x12 is capable of supplying power to two

identical DC motors to be driven at the same time at

twelve Amps nominal and eighteen Amps peak. This

motor controller allows hearty protection for the platforms

more sensitive electronic components. Protection offered

by the Sabertooth 2x12 was not planned as forethought for

the platform, but an actual built in design in the Sabertooth

2x12 Motor Controller.

Leads from the power supply plug directly into the

Sabertooth 2x12 Motor Controller. With the motors and

the power supply directly connected to the motor

controller, this allows the signals from the Atmel

Atmega328p microcontroller to be read by the motor

contoller, the motor controller will then draw the

necessary power from power supply and the route them to

motors. Moreover, the Sabertooth 2x12 Regenerative

Motor Controller recycles all excess power, now in

stepped down voltage, into the circuit and therefore limits

the amount of power drawn from the power supply

extending the run time of the power supply.

The Sabertooth 2x12 Motor Controller takes input

signals in the form of Packetized Serial Protocol from the

Atmel Atmega328p. Packetized Serial Protocol is a point

to point protocol, and provides a very reliable form of

communication between the Atmel Atmega 328p

microcontroller and the Sabertooth 2x12 Motor Controller.

This is due to the ability to flash a boot loader onto the

Atmega328p. With the boot loader flashed onto the

microcontroller a predefined library for the Packetized

Serial protocol can be loaded on to the Atmel

Atmega328p. Then the dip switches on the Sabertooth

2x12 Motor controller a configured with switches “one”

and “two” in the down position. Switches “four” through

“six” determine the address of the motor controller; the

address can range from one hundred twenty-eight to one

hundred thirty-five. The address can be configured so that

multiple motor controllers can share the same serial

transmitter. However, in the case of the Magic Plank we

will only be using one.

Figure 4: Picture of the Sabertooth 2x12 Motor Controller with

the dip switches configured for Packetized Serial Protocol.

The Sabertooth 2x12 Motor Controller will be

connected via pins “S1” and S2” to the Atmel

Atmega328p pins nineteen and eighteen. The pins are the

RX and TX and establish the line of communication

between the two. Recycled power in the form or five volts

is transferred from pin “5V” to the pin labeled ‘VCC” on

the Atmega328p. Battery leads are connected positive

into “B+” and negative into “B-“. The motors are

connected “M1A”, “M1B”, “M2A”, and “M2B”

respectively.

B. 250W Brushed DC Motors

 The Magic Plank utilizes 2 250 watt brushed DC

motors to balance. These powerful motors are rated to

draw a current of 13A. Although the Sabertooth motor

controller is rated for 12A nominally, it can support up to

18A peak current. With the batteries supplying 24V, 250

watt motors should be drawing around 10.4A nominally,

which is well within the supported range of the motor

controller. Even with motors rated for such high current

draw, the motors are never used to their full capacity,

which means that, under most circumstances, the motors

will not be requiring a high current draw. Even in the

event of a motor stall where the motors reverse direction

and draw a large spike in the current, the motor controller

offers overdraw protection, preventing the controller from

burning out or becoming damaged.

Figure 5: Figure illustration the pin connections between the

Saberthooth 2x12 Motor Controller, Atmel Atmega328p

Microcontroller, power supply, and motors.

Sabertooth 2x12 Motor Controller Pin Connections

Pin on the Sabertooth
2x12

Connection

S2 Pin 19 on Atmega328p

S1 Pin 18 on Atmega328p

5V VCC on Atmega328p

0V Ground on Atmega328p

B+ Positive lead on Power supply

B- Negative lead on Power Supply

M1A Lead from Motor 1

M1B Lead from Motor 1

M2A Lead from Motor 2

M2B Lead from Motor 2

Table 4: A table listing the pin connections between the

Saberthooth 2x12 Motor Controller, Atmel Atmega328p

Microcontroller, power supply, and motors.

VI. SOFTWARE OVERVIEW

The Magic Plank is has an intricate network of thought

out classes. Each class provides a compartmentalized

function that by itself useless, but combined with the other

classes, provides all the necessary data that is needed to

ensure that the balancer algorithm runs as smoothly as

possible. The software design behind the magic plank

consists of five distinct classes, each serving a

compartmentalized function, but is important to overall

effectiveness of the balancer algorithm.

The Sabertooth class handles the interaction of the

motors and how the Packetize Serial Protocol sends and

receives data from the Atmel Atmega328p

Microcontroller. Furthermore, the Sabertooth class is

responsible for handling the voltage required by the

motors, as well as recycling unused power. Moreover, the

sabertooth class handles the software revive and kill

switches that either provide power to the motors or cut all

power to them.

The Bluetooth class handles how the SMD Module RN-

42 receives and sends data from Wiimote wireless

controller and the Atmel Atmega328p. In addition,

Bluetooth class, assists in processing the raw values that is

transmitted from the Wiimote wireless controller and for

the initial “pairing” of the Wiimote Wireless controller

and the SMD Module RN-42.

The IMU class provides an important and complex job

that is extremely essential to the efficiency of the balancer

protocol. The IMU class takes full advantage of the

“master-slave” relationship of the IMU 3000 Fusion

board. Using the secondary I
2
C, IMU 3000 is able to read

the data from the ADXL345 registers; this data is passed

through IMU 3000 as positional data measured in float

point. The IMU class also calibrates the IMU 3000 Fusion

Board for each use. The calibration is achieved by

“zeroing out” the IMU 3000 Fusion Board.

 This means that each time Magic Plank is powered on,

the platform must be held in a level position to get a base

reference read of being level. If Magic Plank is held in a

position that is not horizontally level, then IMU 3000

Fusion board will that position as reference and strive to

balance the Magic Plank to the reference position. The

raw data that is measured by the IMU 3000 and the

ADXL345 is converted into angular rate or degrees per

second for the IMU 3000 and gees for the ADXL345. The

data from the IMU class is then passed on to the Filter

class, here the vibrational noise from the accelerometer

and the drift from the gyroscope’s drift. This ensures pure

unadulterated data, which allows easier processing in the

balancer algorithm. The data that is outputted by the IMU

class in the form of current angle or projected angle. This

is combined data of the IMU 3000 and the ADXL345.

The filter class manages the IMU class.

The fifth and final class is the balancer itself. The

balancer manages the Sabertooth, Bluetooth, and Filter

classes. The Primary balancing algorithm is a

Proportional Integral Derivative control loop. The data

from the filter is passed into the balancer. The balancer

using the Proportional Integral Derivative control loops

creates data that is sent to the motor controller. The data

is then interpreted by the motor controller to provide the

proper power to the motors to keep the platform balanced.

Moreover, in the same data packet, the balancer is also

transmitting steering comrades to the motor controller.

Again, the motor controller will interpret the data to

determine which motor must spin faster than the other to

either turn left or right.

VII. SOFTWARE DESIGN

The software design for the Magic Plank is really the

main part of the project. It is implemented using the

Arduino programming language, which is syntax

compatible with C++. Taking advantage of this object

oriented code base, the code is designed as a collection of

modules which each perform their functions

independently. The hierarchy takes a “bottom up”

approach by first addressing bare hardware interfacing and

handling the hardware functions to make it easier to

handle from the higher level modules. The Sabertooth,

IMU, and Bluetooth modules handle hardware interfacing

while the Filter class manages the IMU and handles angle

processing for the Balancer class, which manages all the

classes in the hierarchy and incorporates them into a main

control loop.

A. Balancer

The balancer class is the main “master” class of the

system. Balancer, as seen in the code hierarchy,

instantiates and manages the Bluetooth, Sabertooth, and

Filter classes. The balancer contains the Proportional

Integral Derivative (PID) control algorithm that calculates

a speed for the motors. The main control loop operates by

first updating the Bluetooth class, which will either result

in a new steering value from the Bluetooth module or

result in a failure. In the event of a failure, the loop will

send a signal to terminate movement of the motors, which

creates the effect of a software “dead man” switch. More

on this functionality is described in detail in the section

regarding the Bluetooth class. In the event of a success,

the loop then continues to a loop timing control, which

regulates the loop time of the algorithm. Currently, the

algorithm executes a loop time of 50 ms, or 200 loops per

second. After the loop regulation time, the PID control

function is executed.

The PID control function operates by first updating the

Filter class, which implicitly updates the IMU class,

therefore sampling new data from the current data from

the IMU3000. Once this update is complete, a new angle

is returned for use in the PID calculation.

Figure 6: Block diagram that displays the relationship

between each class.

The first thing to calculate is P, or the proportional gain

of the system. P is the simplest part of the algorithm,

simply corresponding to a motor offset directly

proportional to the current angle of the system. P is

calculated thusly:

Where θ is the current angle of the system and δ is the

current rate of change of the angle as read from the

gyroscope.

Next is I, or the Integral calculation. I can be considered

a lag time that catches up to the Proportional response

over time. The primary purpose of I is to provide a

smoothing effect that prevents the platform from

overcompensating and reduces the effects of oscillation on

the system. I is calculated as follows:

Where Iresponse is a constant that affects the speed at which

I will respond over time and PPrev is the Proportional

response of the previous loop.

 The final piece of the puzzle is D, which is the

Derivative. D can be considered a response to spikes in the

system, where D increases with a rapid change over time

and approaches zero when there is little change over time.

This results in the ability of the system to more readily

compensate for a rapid change so that it can compensate

accordingly. D is calculated as follows:

 ()

Where PPrev is the Proportional response of the previous

loop, P is the Proportional response of the current loop,

and Dresponse is a constant that determines how rapidly D

will change over time.

Finally, these are all summed together to produce the

raw speed σ.

Where ω is the gain, a multiplier used to increase the raw

magnitude sent to the motor controller, and constants Kp,

Ki, and Kd are constants used to determine the influence of

P, I, and D.

Next, the raw speed is factored in with the steering

command, which is a number that is added to the first

motor and subtracted from the speed of the second motor

in order to provide equal and opposite offsets to the motor,

allowing for the platform to turn with a zero turn radius

and thus preserving equilibrium.

B. Bluetooth

The Bluetooth class is the driver that handles all input

from the Bluetooth RN-42 Bluetooth module. The first

function is the update function, which reads in and parses

a new two byte signed integer value from the Bluetooth

module. This value is then cross-referenced against a pre-

defined “kill” command. If the “kill” command is

received, a killSwitch flag is marked. If the connection

times out and does not receive any data, the update

function returns false. If the killSwitch flag is marked or

the update returns false, the Balancer takes appropriate

action and terminates movement of the motors. Upon

termination of the motors, the Balance r then calls the next

function, which is the DeadLoop. In the loop, the

Bluetooth module continues to be sampled until it receives

a pre-defined “revive” command. Upon receiving this

command, the loop exits and the Balancer is free to

resume the balancing loop. In addition to handling the

“kill switch”, the secondary function of the Bluetooth

class is to interpret incoming steering commands, which,

if valid, are passed up to the Balancer class for integration

into the control loop.

C. Filter

The Filter class handles processing the raw data passed

up from the IMU class and passes the data through what is

known as a Complementary Filter. The Accelerometer’s

angle can be calculated by taking the current gravitational

force in Gs upon all three axes. First, the force vector R is

calculated using the following formula:

 √

The relevant axis of tilt for the Magic Plank is the X axis.

The angle upon the X axis can be calculated as follows:

 (

)

The Gyroscope’s angle calculation can be calculated by

taking the current rate of change in degrees per second and

factoring it in with the time elapsed since the previous

sample as follows:

Next, since the gyroscope suffers from gyroscopic drift

over time and the accelerometer suffers from vibrational

noise, the angles are passed through the filter. The

complementary filter can be expressed as follows:

 () ()

Where τ is adjusted to increase or decrease the ratio of the

accelerometer to the gyroscope. With this filter, the

accelerometer’s vibrational noise can be suppressed while

the gyroscope’s drift can be corrected, returning a more

accurate angle for the Balancer class.

D. IMU

The IMU class is the hardware driver for the IMU3000.

The IMU works by utilizing the hardware supported I
2
C

interface and the Arduino I
2
C software library. Initializing

the IMU causes it to enter into the calibration function,

which calibrates the IMU, assuming that the current

orientation is level. This initialization is actually critical to

the startup of the Magic Plank and determines the level at

which the platform will attempt to balance. Updating the

IMU causes the class to sample from the IMU3000’s

registers, sampling the most recent raw data from the

gyroscope and its auxiliary accelerometer. It then subtracts

the calibration offsets determined upon initialization and

also converts the raw data into usable data: degrees per

second for the gyroscope and force of gravity in Gs. These

values are then passed up for the Filter class to use.

E. Sabertooth

 The IMU class is the hardware driver for the IMU3000.

The IMU works by utilizing the hardware supported I
2
C

interface and the Arduino I
2
C software library. Initializing

the IMU causes it to enter into the calibration function,

which calibrates the IMU, assuming that the current

orientation is level. This initialization is actually critical to

the startup of the Magic Plank and determines the level at

which the platform will attempt to balance. Updating the

IMU causes the class to sample from the IMU3000’s

registers, sampling the most recent raw data from the

gyroscope and its auxiliary accelerometer. It then subtracts

the calibration offsets determined upon initialization and

also converts the raw data into usable data: degrees per

second for the gyroscope and force of gravity in Gs. These

values are then passed up for the Filter class to use.

VII. CONCLUSION

The Magic Plank allows exploring a problem that has

not been attempted yet at UCF. Exploring the inverted

pendulum problem sheds light in an area that has not

actively researched at UCF. The Magic Plank has and

continues to provide much knowledge in embedded

software programming and understand how Proportional

Integral Derivative control loop handles the delicate

balance of the inverted pendulum problem with the added

challenge of wireless steering control.

BIOGRAPHY

Brian Jacobs is a student at the

University of Central Florida

pursuing a Bachelor of Science in

Computer Engineering. Brian is

currently employed as a software

engineer at the DiSTI Corporation

providing Human Machine

Interface development and

maintenance training services to a

variety of clients ranging from private companies to the

US military. His preference is to work on low level

software design, and, after graduating, aspires to work in

the field of embedded systems engineering.

Kenneth Santiago Jr, 24, is

currently pursuing a Bachelor of

Science in Computer Engineering

degree at the University of Central

Florida. After graduating in

Summer of 2012, Kenneth plans to

pursue a career in embedded

systems design. Kenneth is

currently employed at HostDime

International as a System Technician. Here Kenneth

provides a wide variety of support ranging from software

to hardware. Through Kenneth's employment at HostDime

International, Kenneth has gained valuable experience

with a growing provider of web hosting and server

solutions.

Stephen Colby Fraser II, 25, is

currently pursuing a Bachelor of

Science in Computer Engineering

degree at the University of Central

Florida. After graduating in the

Summer of 2012, Stephen plans to

pursue a career in the Defense

Industry, in the fields of embedded

systems design, database development and security, or

network security engineer. Stephen is currently employed

at HostDime International; Stephen has gained valuable

experience with a continuously growing provider of web

hosting and server solutions. Stephen is a self motivated

learner who regularly maintains interest and works on web

design, network security, database development and

security, as well as embedded systems design projects.

Stephen enjoys and looks forward to each new challenged

that each project presents.

